If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6a^2+18a-180=0
a = 6; b = 18; c = -180;
Δ = b2-4ac
Δ = 182-4·6·(-180)
Δ = 4644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4644}=\sqrt{36*129}=\sqrt{36}*\sqrt{129}=6\sqrt{129}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6\sqrt{129}}{2*6}=\frac{-18-6\sqrt{129}}{12} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6\sqrt{129}}{2*6}=\frac{-18+6\sqrt{129}}{12} $
| -8k+7=-113+7k | | 10+6b=52 | | -12/5=-128h | | 2/5c+4/5c—6=c+7 | | -4/7u-7/2=-8/3 | | 8^(2x-1)•(1/16)^x+2=1 | | (3x+5)=13 | | 9y+19=11 | | 1800+10x=1500+50x | | -8/3=-4/7u-7/2 | | -9+3a=6a-21 | | |3x+5|=13 | | 2x(3x+6)(2x-10)=0 | | 10y=4×+9 | | 0.25x+13=4(×-8) | | 5y+17=9 | | 6+3+x=10 | | b-1/4=32/1 | | y-50=100 | | 3y=7+60 | | 49+7y=0 | | 180=2m+45. | | L=7+r | | 8x+2x+9=5x+14 | | 0.048×x+0.15×(1-x)=0.1041 | | L=7r | | b-1/8=81/2 | | 5-3+x=15 | | 2w+8=-18 | | 14.50=2.50g+2 | | R=7-l | | 2x+6+7=0 |